Propagation kernels: efficient graph kernels from propagated information

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Information theoretic graph kernels

This thesis addresses the problems that arise in state-of-the-art structural learning methods for (hyper)graph classification or clustering, particularly focusing on developing novel information theoretic kernels for graphs. To this end, we commence in Chapter 3 by defining a family of Jensen-Shannon diffusion kernels, i.e., the information theoretic kernels, for (un)attributed graphs. We show ...

متن کامل

Learning with Graphs using Kernels from Propagated Information

Traditional machine learning approaches are designed to learn from independent vector-valued data points.�e assumption that instances are independent, however, is not always true. On the contrary, there are numerous domains where data points are cross-linked, for example social networks, where persons are linked by friendship relations.�ese relations among data points make traditional machine l...

متن کامل

Propagation Kernels

We introduce propagation kernels, a general graph-kernel framework for eXciently measuring the similarity of structured data. Propagation kernels are based on monitoring how information spreads through a set of given graphs. They leverage early-stage distributions from propagation schemes such as random walks to capture structural information encoded in node labels, attributes, and edge informa...

متن کامل

Efficient Graph Kernels for Textual Entailment Recognition

One of the most important research area in Natural Language Processing concerns the modeling of semantics expressed in text. Since foundational work in Natural Language Understanding has shown that a deep semantic approach is still not feasible, current research is focused on shallow methods combining linguistic models and machine learning techniques. The latter aim at learning semantic models,...

متن کامل

Efficient graphlet kernels for large graph comparison

State-of-the-art graph kernels do not scale to large graphs with hundreds of nodes and thousands of edges. In this article we propose to compare graphs by counting graphlets, i.e., subgraphs with k nodes where k ∈ {3, 4, 5}. Exhaustive enumeration of all graphlets being prohibitively expensive, we introduce two theoretically grounded speedup schemes, one based on sampling and the second one spe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine Learning

سال: 2015

ISSN: 0885-6125,1573-0565

DOI: 10.1007/s10994-015-5517-9